
TRS-80 MORSE CODE TRAN~HIT & RECEIVE PROGRAM BY t74UCH VER 2. 2

Detailed operating instructions are presented in Part 1 of the
program. The main program is Part 2 that also includes a 5
page instruction su.~.r.!ary that May be called anytime from the
TRANSMIT MODE by operators new to the syster:1. The program
documentation that follows will not duplicate in netail the
instructions included in Part 1, but is provided for those
users who •wish-to-dig-deeper• into this BASIC program's
logic, progran flow, and layout.

It is written in Level II BASIC which allows transmit and
receive code speeds up to the 25 word per ninute area, yet
most importantly allows the averag~ user to follow the program
logic and flow and make his/her modificE;tions to the program
very easy to acco~plish which machine code would . not allow.

The most unique aspect of this program is that it will both
transmit and receive Morse code on any standard Level II
TRS-80 Microcoruputer (or most any Microcomputer that uses SK
and up Microsoft Basic with nodest changes) WITHOUT any
peripheral or ancillary devices whatsoever. The cassette motor
control relay K1 is used for the keying relay and the cassette
EAR plug line for receiving Moroe code audio of approximately
1 volt peak to peak derived from the station receiver's speak
er terminals.

A unique software solution renders the TRS-80 flip-flop Z-24
•invisible• to incoclng signals. Since the TRS-80 cassette
control relay K1 will only handle VERY low power levels (about
6 volts at 400-500 mils) it is STRO:,GLY recor..rnended that a
7406/71«:17 TTL buffer chip or Radio Shack 1275-004 ($2.99)
relay be used as a buffer between the TRS-80 and the station
transmitter.

For gaining program operatinq experience, a low cost Radio
Shack Morse Code Practice Oscillator (120-005) may be used for

,both generating the Morse code for the TP.S-80 to decode and
print out (using the earphone jack on the code oscillator
connectgd to the TRS-SO's EAR plug), and by installing a sub
miniature Radio Shack phone jack on the code oscillator across
the keying circuit, and having the TPS-80 subminiature
cassette REtlOTi: plug plugtjed into it for TP.S-80 ltorse output.

PROGRAM ORGl\!II ZJ\TION:
The program consists of eight segments:
1 • Initialization (CLEAR, DH!I:NSION & DEFINE INTEGERS)
2. Transr.it t:orse look-up table (1:adot and 2•dash)
3. Transmit Morse timing
4. •o• signal - prepared messages (20+)
5. Code practice (alphabet, alphanumerics, all+ punctucation)
6. Receive Morse decoding algorithM
7. 100 page automatic logbook/file for contests, etc.
8. Instruction sumraary (5 pages for newcomers)

InITIALIZATION SEGMENT:

This segnent allows the user to choose either alphanumeric
readout or Morse code readout on the video display, to choose
transmit Morse code speed (recaive speed is automatic), and
rcr.ti.nds the operator that •1eft-arrow• calls up the instruct
ion summary and the •cLr.AR• key is the transmit/receive
switch. It also defines as integers A to Z for optinurn code
speed, DIMENSIONS the Morse receive array, and CLEARS 25S0
bytes for the automatic logbook/file. Lastly, it includes an
error trapping function that may be deliberately invoked to
obtain immediate return to the TRANSMIT mode.

TRANSMIT MORSE LOOK-UP TABLE:

Surprisingly, the fastest means of generating Morse code using
the 12K Microsoft BASIC in tho Level II TRS-80 (no machine
code allowed to facilitate user comprehension) is the simple
IF-THEN statement and look-up table which converts the alpha
numeric/punctuation symbol to a number in which all 1's • dots
and all 2's • dashes, for its equivalent Morse code character:
i.e., Aa12, B=2111, C=2121, etc. Each character is followed
by a GOTO directive which directs the program to the transmit
Morse timing segment to save time. Though Version 2.2's
transmit Morse look-up table is given alphabetically and
numerically for convenience, it nay be further speeded up by
rearranging the alphanumerics in the same orcer as the DATA
table in the RECEIVE Morse decoding segment, if desired.

In the RECEIVE mode, the order approxirnates the most comr.ionly
used letters in the Eriqlish language, in order of usage, which
was the way Morse code has evolved to today's standard; i.e,
•E• is the most coMrnonly used letter, so it• a dit (1), and
•o• the most infrequently used letter so it• dah dah di dah
(2212). If one were to transpose the l's to O's and the 2's
to l's you would have binary numbers• to the most frequently
used alphabet characters in Cnglish in proper order. Give you
any ideas?

In the TRl\NSr1IT MODE all generally accepted Morse characters
are provided plus EOM (end of 1nessage) and EO\'l (end of work)
by using the •rand"&• symbols, respectively. Should a key
board character such as•$• or •1 11 or•@• which has no f-'.orse
equivalent be Lo entered via the keyboard inadvertently, an
error-trapping subroutine skips . it and the program awaits the
next legal alphanur.ieric with a Morse equivalent. At the end
of the look-up table the ASCII codes for up-arrow, loft-orrow,
down-arrow, right-arrow, and CLEAR key are scanned and tho
programm directed to the subroutines of: •o• signal-message,
auto-logbook, instruction summary, log book review, or RI:CEIVE
mode as called by YOU, the operator and Chief-Pilot of this
exquisitely wonderful machine.

TRA?1S!'.IT MOP.SE TI!1ING SEGMENT:

Here is the segnent that accomplishes the job of translating
the Morse character's 1's and 2's (it could just as well have
been O's and 1's) into properly timed dots and dashes with the
co~rect ti~inq intervals between each elcnent and character
via the LEN an, MID string functions which allows the program
to 'peel off' each elenent of a character, one at a tine. The
international standa:d of: dot= 1 time interval, dash • 3
times 1 dot interval, and space between dot/dash elements of ·a
given character= 1 dot interval, is set by this segment.
Tranmitting code speed is determined by multiplying each
element that forms a Morse character by •s" which is the
adjusted value for the desired code speed that the ope~ator
I~PUT during program initialization.

Upon completion of each Morse character, this segment then
directs the program to the ·o?erator selected input; i.e., back
to the keyboard, •u• signal/message subroutine, RECEIVE mode,
logbook subroutines, or instruction summary. Prior to output
on video, this seg1:ient determines whether alphanwnerics or
Morse code was selected. Morse printout via 1's and 2's is
seldom used except for the first few training periods with
those individuals just beginning to learn Morse.

The cassette motor control relay K1, on the bottom left side
of th.e lower TP.S-00 printed circuit board (tubular yellow
plastic enclosure), is closed and opened as the keying relay
via the OUT {port) 255 stateMent. If the user is skilled in
printed circuit boarc work, it is a simple matter to install a
norm~lly closed Mini-phone jack on the rear of the TRS-80
keyboard in series between relay K1 and the output of
integrated circuit Z-41 for transmit keying. ~hus allowing
Z-41 to drive a · separate relay such as the Radio Shack
1275-004 for transmitter keying. This relay will handle 125
volts ac at 1 am~ and is fast enough to follow the progra~ up
to about 25 words per minute. Conversely, a high speed 5 to 6
volts de reed relay may be u~cd which will follow this program
up to about 40 wcrds per minute. Above this speed, progran\
execution tirae in Dl'SIC becomes the limiting factor. By
utilizing the excellent Mumford Micro Syster.,s 3 speed TRS-80
clock modification, both TIU\HSMIT and RECEIVE modes may be
increased an additional 50 percent.

•o• SIG.JAL - PREPARZD MI:SSAGE SEG!1E~tT:

Twenty prepared "o• signal and message formats are given
including: CQ, QTU, QRZ, QRX, QSL, QSY, QSY+, QSY-, QRU, Qrel,
OPS, QRQ, RST, QSL, 73, etc~ There is no lir.~t to the number
of additional messages that may be added, eY.ceot available
r:lenory. There is also a SPEED subcorr..iand which allows the'
operator to change transmit code speed without rcinitializinq
the program ancl losing the data stored in the nutor:iatic
logbook funtion. This segment also allow3 the operator to
•elect the type of TP.ANSMIT Morse code practic~ desired.

Code 1 • alphabet only, Code 2 • alphanumerics, Code 3 •
alphanumerics + punctuation. Thourrh the arrow sy!"".bols are
illustrated as rerninciers, they ~ay only be used during the
transmit or receive modes. This segr.ent also uses the LEN and
MID string functions of Level II Bl\SIC for peeling off each
letter, one at a time, for e~ch prepared message. Each
message is lir.iited to a maxiMum of 240 bytes (string length),
but by concatenating strin~s with appropiate software mods any
message of any length may be transmitted. One final noteworthy
subcommand included in this seg:~nt is the TEST subcommand.
This function outputs the word PARIS with appropriate letter
and word spacing standards so that the operator may time the
number of words sent for 15 seconds, multiply by 4, and have
his exact words per r,1inute code speed calibration.

CODE PRACTICE SEGME:1T:

This unique subroutine utilizes the random number generator
incorporated in the Zilog Z-80 micro~rocessor to generate a
number between 1 and 26 in the Code 1, alphabet only, code
practice mode. By adding 59 to to the random number the ASCII
character code for the alphabet from A to Z is generated and
output, a letter at a .tiir.e, in 5 letter code groups. Code 2,
alphanumerics, is generatP.d in much the same way by rando~ly
generating a number from 1 to 47 and adding 48 to it to obtain
the ASCII character code for beth numbers and alpahbet. Since
ASCII character codes 60, 61, 62, and 64 which equal less
than, equal sign, greater than, and@, respectively, have no
Morse code equivalents, they are trapped and not output.

Code J, alphanumerics+ punctuation is generated in much the
same way. For brevity, the Morse double dash is displayed on
video as a single dash, but for purists nay be easily modified
to a double dash if desired. Also, the normal 7 times dot
length spacing after punctuation has been held to only 3 times
dot length as it has been found in numerous Morse code
training seesions that this convention speeds up the learning
process. Spacing b(itween each 5 letter group uses the
international standard 7 times dot length for word spacing.

RECEIVE MORSE DECODI~G SEGMENT z

Utilizes an algorithr.1 derived by the MIT Radio Club rnany years
ago and improved upon by Robert Kurtz and the author. Its
claim to farae is the nethod we developed to interface the
TRS-80 with an ordinary comnunications receiever's speaker
output that DOES NOT RI:QUinE any ancillary/peripheral devices
to work properly with Morse signals of S4 or stronger. Through
sheer serendipity, cleverness, and lots of luck this
subroutine r.1akes the TRS-80 flio-floo Z-4 invisible to the
approximately 1 volt 1:mak to peak a~dio · Morse signal coning
from the station receiver's Rneaker terminals. This is done
by re-setting flip-flop Z-4 every tillle tho length of time is
measured by the program to determine whether the Morse element
is a dot, dash, or ele.~nt space. With a gooc! signal to noise
ratio incoming signal (Z4 or better), it will copy well sent

Morse up to 20 to 25 words per minute, which
upper lir.u.t due to Bi\SIC (with standar.~
execution tirne.

is about its
clock) program

For operators working stations with •swing fists• (odd-ball
dot/dash timing ratios), the RECEIVE MODE subroutine allows
the operator to change these ratios by pressing •p• on the
keyboard. This takes a bit of experimenting and
experience, but after a few hours operating is quite easy to
implement. For operating convenience, the FILE
(auto-logbook) function may be called from both the transmit
and receive modes.

There are many algorithms for decoing Morse code that may be
written in Level II BASIC, but when the trade-offs between
program length and execution tirne are e·raluated, this ver:iion
appears to be the best com!)ronise. z-4, an LM-3900 Norton
operational amplifier in the TRS-S0's cassette CASSIN input
line is designed to serve as a pulse shaping and level
adjusting network for the CLOAD function in normal TRS-80
operation. It works remarkably well for Morse code too, but
inay be irr~roved a bit (for very weak signals) by adding an
AVC/limiting amplifier between the TPS-80 and receiver s~eaker
terminals as described by N6WA in the Sept. '79 issue of 73
~agazine, pages 116-117, if an emitter follower 2N2222
transistor is added to match the TRS-SO's 100 ohm input
ir.ipedance.

FILE J.nD FILE-REVIID·I SEGMENT:

This function is provided the operator to create a semiauto
~4tic logbook with auto-sequencing for each entry. During
initialization the prograr.i CLEARS 2550 bytes for this
subroutine thus allowing only 25 bytes per entry if all 100
log entries were used. By all means CLEAR as many bytes as
your installed memory will allow. This subroutine's most
useful function is during CW (Morse code) amateur raa.1O
contests which is the reason for the auto-sequencing aspect of
the program as time/speed are important. The FILE subroutine
may called froM both TRAUSI,!IT and RECEIVE: modes by pressing
the 'right-arrow' on the keyboard. Each time it is called it
will auto:,iatically advance to the next unused file where the
call letters of the station worked, date, time, band, or what
have you may be entered.

When the FILE REVIEW subroutine is called by pressing
'down-arrow' on the keyboard, t~e progran will sequentially
display 4 files per 9age (16 lines naxir'lurn if each of the 4
files is filled to capacity), each tine the ENTER key i~
pressed. You do not have to review all 25 file pages (4 per
page ti~~s 25 • 100 total) to return to the TP.ANSMIT ~ode, but
may escape anytime by pressing 'break,' ther. '@,' and then .
ENTER. Here we d'?liberately induce an error and use tho 0!'1
ERROR GOTO function to immediately put us back in the TRANSMIT
MODE. Thia is a real time saver during CW contests.

At the end of a d~y•s operation, or end of a contest, the file
data may be saved on cassette or disk for permanent record and
storage using the PRiilT#-1, function described on page 3/10 .
(for cassette) of the Level II manual. If you plan to use
this function frequently, by all means add the following lines
to this program: ·
5000PRINTl-1,BA$:PRINTl-1,BB$:PRINTl-1,BC$:PRINTl-1,BD$ (etc).
Remember that each print staterr.ent will only handle strings
that TOTAL 240 bytes. This is why the PRINT#-1, is repe~ted
for each string we wish to CShVE. Add as many lines and
strings as you wish to CSAVE and then presa 'BREAK.,' enter RUil
5000 (with the cassette turned •oN• and RECORD and PLAY
depressed) whenever you wish to make a permanent record of
your logbook entries.

INSTRUCTION SUl-ll1ARY SEG~1ENT:
One usually does not write instructions on how to use
instructions. The program's instruction swrm:ary is provided
basically for the user new to the system who does not wish to
pickup a written instruction during system operation. It is
called from the TRANS11IT MODE by pressing 'left-arrow.'

HINTS A."lD KINKS FOR SUCCESSFUL SYSTEI! OPERATION:
Probably the most difficult challenge
this Morse Code Syste1.1 (or ANY TRS-80
be the problem of quieting down
interference) generated by the TRS-80

presented to tho user of
Morse Code Prograr.t) will
the RFI (radio frequency
itself. ·

Every little digital gate in the TRS-30 plus the nominal
10.6445 ~lHz crystal oscillator and all the clock dividers are
each and every one a miniature spark coil transr,1itter, or at
the very least act like one. Do not . let this bamboozle or
overwhelm you. We shall overcome if we follow a few not too
difficult ground rules that will allow us to easily copy most
any Morse signal that we can hear. After July 1, 1980 all new
microcomputers will have to meet the FCC rules regarding
spurious radiation levels. Till then, try ~hese recipes to
minimize the problem:
1. Use Radio Shack j15-1106
power line after cutting each
2. Physically separate the
station receiver.

line filters on EACH comr.ionent' s
power cord to minir.um length.

TRS-80 at least 6 feet from the

3. Run good quality well shielded (not the cheapest you can
buy) RG8/U SEPARATELY from the ~ransr.iitter and receiver to
your antenna.
4. Your station antenna should be AT LEAST 80 feet away from
the TRS-80. Install T/R relay and broadband preamplifier AT
the ANTEUNA. This is the most irnnortant item of all.
s. If all else fails, turn-off expan3ion interface when
operating and DI~CONNECT cassette and interface cables at the
keyboard. When the operating day is finished, CSAVE your
auto-logbook BtFORE powering up tha interface and printing out
the logbook data. NOTE: shicldinq & qrounding all TF~-80
cables helps too. DO NOT BLAME THIS PROGRAM IF IT WILL COPY
MORSE FI,,OM YOUR CODE PAACTICC: OSCILLATOR, DUT NOT FROM Youn
RECEIVER ••••• I.E., BETTF.R SHII::LDim, IS NECE:3S:\RY. I Gud luk.'
Note: See Marcll 'SO QST pagos 17-20, •co:n~uter Interferencd.•

-WILL THE W4UCH MORSE CODE SYSTEM WORK
WITH THE NEW RADIO SIIACK LEVEL 2 ROM?

-TP.ANS.MIT MODE, YES ••• RECEIVE MODE NOl
-THE TIMING PARAMETERS ARC DIFFERENT l
=l!JE M.1'\Y HAIL OUT MODS-i-N-~~. • •

MODEL III
NOW
$ 25 ppd.

RJCHCRAFT ENGINEERING LTD. Phone: (7161 753-265.c

NOTE - NOTE - NOTE -
Also change LINE 59 to read: DRAWER 106s
DEF'INT A-C E-Z :------ CHAUTAUQUA, N. Y. 1-4722

W4UCIJ TRS-80 HOR5E coo~ PROGRAM MODIFICATION f1 • JULY 4; 1980

IF YOUR Tns-uo has the two I,C. E•Z cass~tte Load Modification
installeu, the following changes to the RI::CEIVE section will
GREJ\'rLY improve its accuracy up to about 20 WPM, our thanks
to Gene Steele-XS&VE in Orangefiold, Texas for the suggestion.
PleHo ICNoru-: line numbers as many programs are different, but
IM TUE SAn: nJ::Ll\'l'IVE ORDER, Change lines with ARROW ---••- ,

168 rum •1mrc1112 TRS-80 MORSE DECODER PROGRAM LINES 168 • 208
169 I!ll'UT"CIII\RJ',CTT:R TIMINGS 5 ?lOMIIIAI," JCC
170 Ill?UT"SPI\Cr. TIMUIC: 3 ?lO!II:-ll\L~1SS1GOT0173
171 PlllilT"JIECCIVE MOOE"1RESTORE:CC-S51SS•3
172 FORN•1T0100sRF.I\OA$(N) :HP.XTH
173 A•IIII' (255)
174 C$•l?H'. l':Y$ 1IFC$••P-THF.Nrmo1u
175 IFC1•CIIR$(31JGOT0661REM TRAN!:14IT HCDE LINE NUMBER
176 IFC$sCIIR$(10)GOTO209sREM AUTO FILE ROUTINE LINE NUMBER

-• 177 IFA<200Tlll::1173
178 n-o

__ _,., 179 IrA>200,·1:t::ouT255,0
180 J\nI.lr(2SS):D•D+10

••-~ 181 IFl\<200':'IIJ':NC• ((S*C) +.(2*8))/6100,.2*D01DA•2*DAs00-~11GO'l'0188
182 IF~<(.5*C)Tlllm179
183 D0-2*DO:DA•2*DA:OA•DA+1

-•-· 18-4 IFA>200TIIEl~OL'T2S5 ,O
185 A•IIIJ>(2$S):B:aB+10

___ .,_ 186 IF1,>200Tm:t~GOT01114
187 C•((4*C)+D)/5
188 B•O

___ .. 189 IFf,>200TIIENOUT2S5,0
190 l\,.I:ll.' (2S5) :B•B+CC

___ ,,_ 191 IFA>200TIICNCOT0178
192 IFB<(.S*C)TIIE!IGOT0189
173 GOSU.1199
194 l\•I!IP (2S5) :B•B+SS

-•• 195 IFA>200TllENGOT0178
196 IFn<(2*C)Tll£NGOT0194
197 l'RirlT• • 1
198 GOT017J
199 01\•0l'.*2
200 OsOl\+DO
201 IFD>100'!'HE:U>•100
202 PRI:lT.A$ (D)
203 0:\:0:00-0
204 RETURN
205 DATA (no change)
206 DATA (no change)
207 DATA ("o change)
208 DATA (no ,change)

liOTE:1 You will find Gene•a changes a GREAT IMPROVEMENT, W4UCH

	01
	02
	03
	04
	05
	06
	07

