TRS-80 MORSE CODE TRANSMIT & RECEIVE PROGRAM BY W4UCH VER 2.2

Detailed operating instructions are presented in Part 1 of the
program. The main program is Part 2 that also includes a 5
page instruction summary that may be called anytime from the
TRANSMIT MODE by operators new to the system. The program
documentation that follows will not duplicate in detail the
instructions included in Part 1, but is provided for those
users who "wish-to-dig-deeper”™ into this BASIC progran's
logic, progran flow, and lavout.

It is written in Level II BASIC which allows transmit and
receive code speeds up to the 25 word per mninute area, yet
most importantly allows the averagz user to follow the program
logic and flow and make his/her modificetions to the program
very easy to accorplish which machine code would not allow.

The most unique aspect of this program is that it will both
transmit and receive Morse code on any standard Level II
TRS-80 Microcomputer (or most any microcomputer that uses 8K
and up Microsoft Basic with mnodest changes) WITHOUT any
peripheral or ancillary devices whatsoever. The cassette motor
control relay K1 is used for the keying relay and the cassette
EAR plug line for receiving Morse code audio of approximately
1 volt peak to peak derived from the station receiver's speak=-
er terminals.,

A unique software solution renders the TRS-80 flip-flop 2-24
"invisible” to incoming signals. Since the TRS-80 cassette
control relay K1 will only handle VERY low power levels (about
6 volts at 400-500 mils) it is STRONGLY recormended that a
7406/7407 TTL buffer chip or Radio Shack #275-004 ($2.99)
relay be used as a buffer between the TRS-80 and the station
transmitter.

For gaining program operating experience, a 1low cost Radio
Shack Morse Code Practice Oscillator (#20-005) may be used for
both generating the Morse code for the TRS-80 to decode and
print out (using the earphone jack on the code oscillator
connected to the TRS-80's EAP plug), and by installing a sub-
miniature Padio Shack phone jack on the code oscillator across
the keying circuit, and having the TRS-80 subminiature
cassette RENOTE plug plugged into it for TES-80 lMorse output.

PROGRAM ORGANIZATION:

The program consists of eight segrients:

1. Initialization (CLEAR, DIMLNSION & DEFINE INTEGERS)

2. Transrit liorse look=-up table (1=dot and 2=dash)

3. Transmit Morse timing

4. "Q" signal - prepared messages (20+)

5. Code practice (alphabet, alphanumerics, all + punctucation)
6. Receive Morse decoding algorithm

7. 100 page automatic loghbook/file for contests, etc.

8. Instruction summary (5 pages for newcomers)

INITIALIZATION SEGMENT:

This segment allows the user to choose either alphanumeric
readout or Morse code readout on the video display, to choose
transmit Morse code speed (receive speed is automatic), and
reninds the operator that "left-arrow®™ calls up the instruct-
ion summary and the “CLLAR" key is the transmit/receive
switch., It also defines as integers A to Z for optimum code
speed, DIMENSIONS the Morse receive array, and CLEARS 2550
bytes for the automatic logbook/file. Lastly, it includes an
error trapping function that may be deliberately invoked to
obtain immediate return to the TRANSMIT mode.

TRANSMIT MORSE LOOK-UP TABLE:

Surprisingly, the fastest means of generating Morse code using
the 12K Microsoft PBASIC in the Level II TRS-80 (no machine
code allowed to facilitate user comprehension) is the simple
IF-THEN statement and look-up table which converts the alpha-
numeric/punctuation symbol to a number in which all 1's = dots
and all 2's = dashes, for its equivalent Morse code character:
i.e., A=12, B=2111, C=2121, etc. Each character is followed
by a GOTO directive which directs the program to the transmit
Morse timing segment to save time. Though Version 2.2's
transmit Morse look-up table is given alphabetically and
numerically for convenience, it may be further speeded up by
rearranging the alphanumerics in the same order as the DATA
table in the RECEIVE Morse decoding segment, if desired.

In the RECEIVE mode, the order approximates the most commonly
used letters in the English language, in order of usage, which
was the way Morse code has evolved to today's standard; i.e,
®"E" is the most commonly used letter, so it = a dit (1), and
"Q" the most infrequently used letter so it = dah dah di dah
(2212), If one were to transpose the 1's to 0's and the 2's
to 1's you would have binary numbers = to the most frequently
used alphabet characters in English in proper order. Give you
any ideas?

In the TRANSMIT MODE all generally accepted Morse characters
are provided plus EOM (end of message) and EOW (end of work)
by using the "§" and "&" symbols, respectively. Should a key-
board character such as "$" or "%" or "@" which has no Morse
equivalent be be entered via the keyboard inadvertently, an
error-trapping subroutine skips.it and the program awaits the
next legal alpnanuneric with a Morse equivalent. At the end
of the look-up table the ASCII codes for up-arrow, left-arrow,
down-arrow, right-arrow, and CLEAR key are scanned and the
programm directed to the subroutines of: "Q" signal-message,
auto-logbook, instruction surmary, log book review, or RLCEIVE
mode as called by YOU, the operator and Chief-Pilot of this
exquisitely wonderful machine,

TRANSMIT MORSE TIMING SEGMENT:

Here is the segment that accomplishes the job of translating
the Morse character's 1's and 2's (it could just as well have
been 0's and 1's) into properly timed dots and dashes with the
correct timing intervals between each elerment and character
via the LEN anrM ID string functions which allows the progranm
to 'peel off' each element of a character, one at a time. The
international standard of: dot = 1 time interval, dash = 3
times 1 dot interval, and space between dot/dash elements of a
given character = 1 dot interval, is set by this segment.
Tranmitting code speed 1is determined by multiplying each
element that forms a Morse character by "S" which is the
adjusted value for the desired code speed that the operator
INPUT during program initialization.

Upon completion of each Morse character, this segment then
directs the prcgram to the operator selected input; i.e., back
to the keyboard, "Q" signal/message subroutine, RECEIVE mode,
logbook subrcutines, or instruction summary. Prior to output
on video, this segment determines whether alphanumerics or
Morse code was selected. Morse printout via 1's and 2's is
seldon used except for the first few training periods with
those individuals just beginning to learn Morse.

The cassette motor control relay K1, on the bottom left side
of the lower TPS-30 printed circuit board (tubular yellow
plastic enclosure), 1is closed and opened as the keying relay
via the OUT (port) 255 statement. If the user is skilled in
printed circuit board work, it is a simple matter to install a
normally closed mini-phone jack on the rear of the TRS-80
keyboard in series betwecen relay K1 and the output of
integrated circuit 2-41 for transmit keying. Thus allowing
2-41 to drive a separate relay such as the Radio Shack
#275-004 for transmitter keying. This relay will handle 125
volts ac at 1 amp and is fast enough to follow the program up
to about 25 words per minute. Conversely, a high speed 5 to 6
volts dc reed relay may be used which will follow this program
up to about 40 words per minute. Above this speed, program
execution time in BMSIC becomes the 1limiting factor. By
utilizing the excellent Mumford Micro Systems 3 speed TRS-80
clock modification, both TRANSMIT and RECEIVE modes may be
increased an add@itional 50 percent.

"Q" SIGIAL - PREPARED MESSAGE SEGMENT:

Twenty prepared "Q" signal and message fcormats are given
including: CQ, QTH, QRZ, QRX, QSL, QSY, QSY+, QSY-, QRM, QRY,
QPS, QRQ, RST, QSL, 73, etc. There is no limit to the number
of additional messages that may be added, except available
rernory. There is also a SPEED subcommand which allows the
operator to change transmit code speed without reinitializing
the program and 1losing the data stored in the automatic
logbook funtion. This segment also allowis the operator to
select the type of TPANSMIT Morse code practice desired,

Code 1 = alphabet only, Code 2 = alphanumerics, Code 3 =
alphanumerics + punctuation. Thouah the arrow syrbols are
illustrated as reminders, they may only be used during the
transmit or receive modes. This segrment also uses the LEN and
MID string functions of Level II BASIC for peeling off each
letter, one at a time, for each prepared message. Each
message is limited to a maximum of 240 bvtes (string length),
but by concatenating strinas with appropiate software mods any
message of any length may be transmitted. One final noteworthy
subcormand included in this seqirent is the TEST subcommand.
This function outputs the word PARIS with appropriate letter
and word spacing standards so that the operator may time the
nunber of words sent for 15 seconds, multiply by 4, and have
his exact words per minute code speed calibration.

CODE PRACTICE SEGMENT:

This unique subroutine utilizes the random number generator
incorporated in the 2ilog 2-80 microorocessor to generate a
number between 1 and 26 in the Code 1, alphabet only, code
practice mode. Bv adding 59 to to the random number the ASCII
character code for the alphabet from A to Z is generated and
output, a letter at a tirme, in 5 letter code groups. Code 2,
alphanumerics, is generated in much the same way by randomly
generating a number from 1 to 47 and adding 48 to it to obtain
the ASCII character code for beth numbers and alpahbet. Since
ASCII character codes 60, 61, 62, and 64 which ecual less
than, equal sign, greater than, and @, respectively, have no
Morse code equivalents, they are trapped and not output.

Code 3, alphanumerics + punctuation is generated in much the
same way. For brevity, the Morse double dash is displayed on
video as a single dash, but for purists may be easily modified
to a double dash if desired. Also, the normal 7 times dot
length spacing after punctuation has been held to only 3 times
dot 1length as it has been found in numerous Morse code
training seesions that this convention speeds up the learning
process., Spacing bectvween each 5 letter group uses the
international standard 7 times dot length for word spacing.

RECEIVE MORSE DECODING SEGMENT:

Utilizes an algorithm derived by the MIT Radio Club many years
ago and improved upon by Robert Kurtz and the author. 1Its
claim to fame is the nmethod we developed to interface the
TRS-80 with an ordinary comnunications receiever's speaker
output that DOES NOT REZQUIRE any ancillary/peripheral devices
to work properly with Morse signrals of S4 or stronger. Through
sheer serendipity, cleverness, and lots of luck this
subroutine makes the TRS-80 flip-flop 2-4 invisible to the
approximately 1 volt peak to peak audio Morse signal coning
from the station receiver's speaker terminals. This is done
by re-setting flip-flop Z-4 every time the length of time is
measured by the program to determine whether the Morse element
is a dot, dash, ar element space. With a good signal to noise
ratio inconing signal (S4 or bhetter), it will copy well sent

Morse up to 20 to 25 words per minute, which is about its
upper limit due to BASIC (with standard clock) program
execution time. '

For operators working stations with "swing fists" (odd-ball
dot/dash timing ratios), the RECEIVE MODE subroutine allows
the operator to change these ratios by pressing "P" on the

keyboard. This takes a bit of experimenting and
experience, but after a few hours operating is quite easy to
implerent. For operating convenience, the FILE

(auto-logbook) function may be called from both the transmit
and receive modes,

There are many algorithms for decoing Morse code that may be
written in Level II BASIC, but when the trade-offs between
proaram lengtnh and execution time are evaluated, this version
appears to be the best compromise., 2Z-4, an LM-3900 Norton
operational amplifier in the TRS-80's cassette CASSIN input
line is designed to serve as a pulse shaping and level
adjusting network for the CLOAD function in normal TRS-80
operation. It works remarkably well for Morse code too, but
may be 4improved a bit (for very weak signals) by adding an
AVC/limiting amplifier between the TR5-80 and receiver speaker
terminals as described by N6WA in the Sept. '79 issue of 73
magazine, pages 116-117, if an emitter follower 2N2222
transistor is added to match the TRS-80's 100 ohm input
impedance.

FILE 2AND FILE-REVIEW SEGMENT:

This function is provided the operator to create a semiauto-
matic logbcok with auto~sequencing for each entry. During
initialization the program CLEARsS 2550 bytes for this
subroutine thus allowing only 25 bytes per entry if all 100
log entries were used. By all means CLEAR as many bytes as
your installed mernory will allow. This subroutine's most
useful function is during CW (Morse code) amateur radio
contests which is the reason for the z2uto-saquencing aspect of
the program as time/speed are important. The FILE subroutine
may called from both TRAHSMIT and RECEIVE modes by pressing
the ‘right-arrow' on the keyboard. Each time it is called it
will automatically advance to the next unused file where the
call letters of the station worked, date, time, band, or what
have you may be entered.

When the FILE REVIEW subroutine is called by pressing
‘down-arrow' on the keyboard, the progran will sequentially
display 4 files per vage (16 lines naximum if each of the 4
files is filled to capacity), each time the ENTER key is
pressed. You do not have to review all 25 file pages (4 vper
page times 25 = 100 total) to return to the TRANSMIT mode, but
may escape anytime by pressing 'break,' ther '@,' and then
ENTER. Here we deliberately induce an error and use the ON
ERROR GOTO function to immediately put us back in the TRANSMIT
MODE. This is a real time saver during CW contests.

At the end of a day's operation, or end of a contest, the file
data may be saved on cassette or disk for permanent record and
storage using the PRIiIT#-1, function described on page 3/10
(for cassette) of the Level II manual. If you plan to use
this function frequently, by all means add the following lines
to this program:

5000PRINT#=-1,BA$:PRINT#~1,BB$:PRINT§~1,BC$:PRINT#~1,BD$ (etc).
Remember that each print statement will only handle strings
that TOTAL 240 bytes. This is why the PRINT#-1, is repeated
for each string we wish to CSAVE. Add as many lines and
strings as you wish to CSAVE and then press 'BREAK,' enter RUN
5000 (with the cassette turned "ON" and RECORD and PLAY
depressed) whenever you wish to make a permanent record of
your logbook entries.

INSTRUCTION SUMMARY SEGMENT:

One usually does not write instructions on how to use
instructions. The program's instruction summary is provided
basically for the user new to the system who does not wish to
pickup a written instruction during system operation. It is
called from the TRANSMIT MODE by pressing ‘'left-arrow.'

HINTS AND KINKS FOR SUCCESSFUL SYSTE!! OPERATION:

Probably the most difficult challenge presented to the user of
this Morse Code Systen (or ANY TRS-80 Morse Code Program) will
be the problem of quieting down the RFI (radio frequency
interference) generated by the TRS-80 itself.

Every 1little digital gate in the TRS-30 plus the nominal
10.6445 MHz crystal oscillator and all the clock dividers are
each and every one a miniature spark coil transmitter, or at
the very least act like one. Do not. let this bamboozle orx
overwhelm you. We shall overcome if we follow a few not too
difficult ground rules that will allow us to casily copy most
any Morse signal that we can hear. After July 1, 1980 all new
microcomputers will have to 1weet the FCC rules regarding
spurious radiation levels. Till then, try cthese recipes to
minimize the problem:

1. Use Radio Shack #15-1106 line filters on EACH comnonent's
power line after cutting each power cord to minirum length.

2. Physically separate the TRS-80 at least 6 feet from the
station receiver.

3. Run good quality well shielded (not the cheapest you can
buy) RG8/U SEPARATELY from the <cransmitter and receiver to
your antenna.

4. Your station antenna should be AT LEAST 80 feet away from
the TRS-80. Install T/R relay and broadband preamplifier AT
the ANTENNA. This is the most imnortant item of all.

5. If all else fails, turn-off expansion interface when
operating and DISCONNECT cassette and interface cables at the

keyboard. Yhen the operating day is finished, CSAVE your
auto-logbook BLFORE powering up the interface and printing out
the 1logbook data. NOTE: shielding & grounding all TRS-80

cables helps too. DO NOT BLAME THIS PROGRAM IF IT WILL COPY
MORSE FROM YOUR CODE PRACTICE OSCILLATOR, BUT NOT FROM YOUR
RECEIVER..«..I.E., BETTER SHIELDING IS NECESSARY. 'Gud luk.'
Note: See March '80 QST pages 17-20, "Computer Interference.”

—
-WILL THE W4UCH MORSE CODE SYSTEM WORK

WITH THE NEW RADIO SHACK LEVEL 2 ROM?

-TRANSMIT MODE, YES...RECEIVE MODE NO! MODEL III
-THE TIMING PARAMETERS ARL DIFFERENT ! NOW
—~WE—MAY MATL-QUE MODS—IN-FHE-FURURE... $ 25 ppd.

RICHCRAFT ENGINEERING LTD. Phone: (716) 753-2654

e

————i

——

——-ain.

i

LI Y

canads

-oaeiy

NOTE - NOTE - NOTE -

Also change LINE 59 to read: DRAWR 1065
FINT A-C,E=Z:i=ccen= CHAUTAUQUA, N. Y. 14722

Wauch 'l‘RS 80 MORSE CODﬁ PRO(;RAM MODIFICATION #1 - JULY 4, 1980

IF YOUR TRS-80 has the two I.C. E~Z Cassette Load Modification
installed, the following changes to the RECEIVE section will
GREATLY improve its accuracy up to about 20 WPM, Our thanks
to Gene Steele-KSEVE in Orangefield, Texas for the suggestion.
Please IGNORE line numbers as many programs are different, but
IN THE SAME RELATIVC ORDER. Change lines with ARROW e====-=t=

168
169
170
171
172
173
174
175
176
177
178
179
180
191
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208

REM *"1i4UCH/2 TRS-80 MORSE DEZCODER PROGRAM LINES 168 - 208
INPUT"CHARACTER TIMING: 5 NOMIMNAL";CC
INPUT"SPACE TIMING: 3 NOMINAL";SS:GOTO173
PRIIT" RECEIVE MODE®™ :RESTORE:CC=55:55=3
FORN=1T0100 :READAS (N) :NEXTN

A=INP (255)

C$=INKEY$:IFC$="P"THENGOTO169
IFC$=CIiR$(31) GOTO66 : REM TRANSMIT MCDE LINE NUMBER
IFC$=CURS$(10) GOTO209 :REM AUTO FILE ROUTINE LINE NUMBER
IFA<200THEN173

D=0

IFA>20071CN0UT255,0

A=14dP (255) :B=B+10
IFA<200THENC=((5%C) +.(2*B)) /6 : DO*2*D0Os DA=2 *DA : DO=DO+12GOTO188
IFB<(.5%*C)THEN179

DO=2#%D0: DA=2*DA s DA=DA+ 1
IFA>200THENOUT255,0

A=INP(255) :B=B+10

IFA>200THENGOTO184

C=((4*C) +B) /5

B=0

IFA>200THENOUT255,0

A=I:1P (255) :B=B+CC

IFA>200THENGOTO178

IFB<(.5*C) THENGOTO189

GOSULB199

A=T!P (255) :B=B+SS

IFA>200THENGOTO178

IFR<(2*C) THENGOTO194

PRINT" "3

GOTO0173

DA=DA*2

D=DA+DO

IFD>100THEND=100

PRINTAS (D)

DA=0:DO=0

RETURN

DATA (no change)

DATA (no change)

DATA (no change)

DATA (no .change)

NOTE: You will find Gene's changes a GREAT IMPROVEMENT. W4UCH

	01
	02
	03
	04
	05
	06
	07

